Rt and rp, steady-state and the transient thermal resistance of the transitor in the plane of power genera-
tion; RTp and rqp, steady-state and the transient thermal resistance of the PTC thermistor; yp, transfer
function of the PTC thermistor with respect to temperature; Uc and ug, dc and the instantaneous collector
voltage in the transistor circuit; Uiy and ujn, de and the instantaneous input voltage to the transistor stage;
Iggs dc collector current in the transistor corresponding to ¢(x, t) = ®¢p; iQ, instantaneous collector cur-
rent; ip, instantaneous base current; Rp and rp, steady-state and the instantaneous electrical resistance of
the PTC thermistor; y, Ry R4, parameters of the resistance-temperature characteristic of the PTC thermis-
tor; pp, electrical resistivity of the PTC thermistor; op, cross-sectional area of the PTC thermistor; I p,
thickness of the PTC thermistor in the x direction; and 3, a, k, ¢, by, by, coefficients,
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CALCULATION OF A TRANSIENT IN A TWO-POLE
NETWORK WITH A THERMISTOR

I. M. Trushin and V. I. Antonov UDC 536.63:621,316.825:621.3,011.1

An analytical expression is derived which describes the variation of the thermistor témpera—
ture during a relay-effect transient process following an instantaneous change in the supply
voltage in an R — RT two-pole network.

Thermistors, a widely known class of semiconductor devices, can be successfully used in various relay
and pulse devices utilizing the electrothermal relay effect. This effect takes place when a dc voltage is ap-
plied to the input of two~pole network containing a thermistor and a linear resistor [1-5].

The transient process in such a network will be described by the well-known differential equation [1]

dT _ E*R.exp(B/T)

V4t  [R.exp(BIT) +RP
This equation can be easily reduced to quadratures by separation of variables, but the resulting expres-

sion in terms of elementary function is not integrable. For this reason, several methods of simplifying the
fundamental equation (1) have been developed so as to yield a solution. These include linearization of the dif-
ferential equation (1), assuming small deviations of thermal and electrical parameters in the network, the
method of piecewise-linear approximation [3], replacement of the thermistor with an equivalent two-pole
network [4], graphical integration [5], etc. However, these methods either are applicable to only a narrow
temperature range or require special graph plotting without being universal and convenient.

—H (T —T,). (1)

In this study, based on a set of assumptions about the characteristics of electrothermal processes in a
thermistor, an attempt will be made to simplify Eq. (1) and to solve it in an analytical form.

For the construction of a workable physical model describing the processes of charge transfer in a
thermistor, we will utilize the fact that the current—voltage characteristic of a thermistor has a typical, for
it, range of negative resistance. The physical processes occurring in semiconductor devices with such a
characteristic are conveniently described with the aid of models which utilize concepts pertaining to a so-
called hot gas of charge carriers [6].

Let us examine the process of current flow in a thermistor on the basis of these concepts. After a vol-
tage has been applied to the input of a four-pole network containing a thermistor and a linear resistor, the

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 38, No. 3, pp. 465-472, March, 1980. Original
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electric field imparts to charge carriers in the thermistor additional kinetic energy. The kinetic energy ac-~
quired by charges in a unit volume during a unit of time is [6]

P 23:-Fe , , k(Te—Ti)
Te Te

}?,K + Bx- (2)

The potential energy which the electric field imparts to the thermistor at the first instant of time is con-
verted partly to Joule~effect heat and partly to "heating'' the gas of charge carriers, viz.,

Py==nPy+ (1 —n) Py = Pey + Pp. (3)
Therefore, the total energy acquired by the thermistor per unit time is
R =Byt Po=ERy + Fox+ 1o+ Py (4)
Substituting this expregsion for the first term on the right-hand side of Eq. (1) yields
Cv diT — Pyt Peg+ Roo + Py — HAT. (5)

We will now express Pex and Prx through the temperature drops (AT,) in the ""gas of charge car-
riers—crystal lattice’" system and (ATL,) in the "crystal lattice—ambient medium" system, respectively.

For the "gas of charge carriers—crystal lattice” system relation (2) yields directly
P (AT ) = NJAT,. (6)

For establishing the P g (ATL) relation we consider that the temperature of the crystal lattice is re-
lated to the thermistor conductance according to the well-known expression

Y. = exp (— B/T). (7}

©

Expanding this function into a Taylor series in the vicinity of the initial temperature and retaining only
the first two terms of this expansion, we have

AY, =Y, — Y, 2B YolT; . (8)
Considering that the current in the circuit containing a thermistor and a linear resistor is
_ EY,
L 14y, R’

and assuming that YTR <« 1, we rewrite expression (9) on the basis of relation (8) as

(9)

Al = —I,= NAT; . (10)
Therefore
2 2
P (AT} ) = EN,AT, — RN:ATY . (11

Noting that AT = ATe + ATT, and using the relations (3), (6}, (11), we rewrite Eq. (5) as a system of
three equations

dAth Py - (N — H) AT
Cy d—gh = (1 —n) Py— RN3ATY + (ENp — H) AT ; (2

AT = AT, + ATy,
The solution to these differential equations for the given initial conditions ( ATgy = AT, = O at t =0} is

AT, — V (N.E — H) 4+ 4R (1 —n) P,N2 th [V (NoE — H)2 4+ 4R (1 — n) P,N3 i
L 2RN? 2Cy -
— Arth NE - J+ NP —H_, (13)
V' (N,E — HY: £ 4R (1 — n) P,N} 2RN '
P N —H
AT, = e [ __ !
T. H—N, (l exp( < ) t) . (14)
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Fig. 1. Transient process in the R—RT net-
work (grade MT-57 thermistor) after applica-
tion of the supply voltage: (a) theoretical
curve based on relations (13) and (14); (b)
experimental curve; T (°C), t (sec).

The curve in Fig. 1 depicts the transient process AT(t) = ATg + ATL, plotted according to relations
(13) and (14). The trend of this transient curve can, evidently, be characterized by the slope angle at the
beginning, inflections at points @ and B, and a horizontal asymptote at t —=.

In addition to the known network parameters (P, H, Cy» R, E), there also appear in Egs. (13) and (14)
the quantities n, Ny, and N, with not yet determined values, We will select the values of parameters n, Ny,
and N, so as to make the right-hand side of Eq. (1) equal to the sum of the right-hand sides of the differen-
tial equations in system (12) at certain characteristic points. For this purpose, we must first analyze the
graph of the function which corresponds to Eq. (1) (Fig. 2).

On this graph we note four characteristic points: A, B, C, D. The coordinates of point A are A(0, P).
Since AT = 0 and ATy, = 0, hence obviously the condition ATy = ATg,+ ATy, yields ATegy =0 and ATL, = 0.
Inserting these values into the system of equations (12), we obtain

dATL, dATe,
dt dt

In this way, the selection of the initial conditions here ensures that at point A the right-hand side of

Eq. (1) is equal to the sum of the right-hand sides of Egs. (12).

Cv L Cy = nPy+ (1 —n) Py = P,. (15)

Point D in Fig. 2 corresponds to thermal steady state in the thermistor att — . Under these con-
ditions dAT/dt = 0. At t — =, furthermore, dATe/dt = 0 and dAT,/dt = 0, inasmuch as Eqs. (13) and (14)
have here horizontal asymptotes. Consequently, at point D there must be satisfied the conditions

_nPOZ(Ni_H)An’, maxs

(16)
— (1 —n) Py = (ENy — H) ATy, max — RN3ATY max.
Considering that ATyax = ATe max + ATL max, we find n from system (16):
_H—N, _(NE—Np o/ [NE=Ny 2_,_Po+(N1—H>ATm“__)‘
n= -?)0— (ATmax 9RN? ‘/ 2RN3 ) RN3 an

In order to ensure that the right-hand side of Eq. (1) is equal to the sum of the right-hand sides of Egs.
(12) at points B and C, it is necessary to differentiate Eq. (1) with respect to time and let d?2AT/dt? = 0, in-
asmuch as these points correspond to the inflection points o and g in Fig. 1. As a result, since dAT/dt > 0
over the entire temperature range (0, ATmax)»

_ xxr—y)lnx (18)
(x -9
with x, y, and vy denoting the respective ratios
x:_&r_‘_cl" y:_l:{ERoo_; ?; R .
R.. E? R.

The family of functions which correspond to expression (18) with various values of v is shown in Fig.
3. Here points L(L’, L") and Q correspond, respectively, to the beginning and the end of the transient pro-
cess (straight-line segment Q—L).
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Fig. 2. Power Cy(d/AT/dt) - 10* (W) expended on changing the
heat content in a thermistor (grade MT-57) as a function of the
instantaneous temperature drop AT (°C), according to Eq. (1).

Fig. 3. Graph for the solution of Eq. (18); %, y, ¥ are dimension-
less quantities.

An analysis of these graphs indicates three possible solutions to Eq. (18):

1) Eq. (18) has two roots (points M and N on curve y = y,), which means that the transient curve (Fig.
1) has two inflection points;

2) Eq. (18) has one root (point K on curve y = y,), which means that the two inflection points on the
transient curve merge into one;

3) Eq. (18) has no roots {curve y = vy3), which means that the transient process evolves without inflec-
tion points.

We are interested in the first case only, because here the transient curve has two inflection points and,
therefore, the relay effect can occur.

Noteworthy is the possibility that, depending on the selection of the point where the transient process
begins (L' or L', for example), the temperature T, at the beginning of the transient process can exceed the -
temperature at one inflection point (point N} or both temperatures at the two inflection points (M and N).
This means that the transient process will evolve with either one or no inflection point, Even in this case,
however, it can be tentatively regarded as a relay-effect process, but as one which begins above point o or
B. Consequently, the subsequent analysis applies to this case too.

It is possible to determine from Eq. (18) both ATopp and ATerc and from Eg. (1) both dATerp/dt and
dAT;pc /dt attheserespective points. Accordingto the stated object of these calculations, it is necessary to en-
sure that the right-hand side of Eq. (1) will be equal to the sum of the right-hand side of Egs. (12) at points
B and C. This requirement will be satisfied when at these points

Cy d?ATer - d ATe, cr+ Cy d2ATL, er -0, (19)
dr _ de? de?
Differentiating the equations in system (12) with respect to time yields
d?AT, dAT,
oy L2e e cp(N, — HYy S2e.or
\4 P V( 1 ) dt
. ;
Cvc—i——Ad—Z‘-ér Cy (ENy— H — 2RN3) dATI"’ <, (20)
dATy, _ dATe,er | dAR o
dt a0 dt

With the aid of condition (19) we finally obtain

, dA
(N, — H)I(N, — H)AT,, cr-+ 7Pl = [2RN3 (ATyy — ATo e — ENg + H][ c, -_27;&

— (N, — H)AT, Cr~nPD] . (21)

Here ATe ¢y 1s a root of the quadratic equation
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dATe

c
A

— = (Ny—H) AR, cr+ (ENy— H) AT — ATg o) — (AT, —aTe, a’RNj -+ P, , (22)

Since Eq. (21) must be satisfied at the two points B(AT¢pp, dATerg/dt) and C (ATgpcs dATepc/dt),
hence upon insertion of their coordinates into this equation the latter will be split into two equations, which
together with expression (17) form a system of three equations with three unknowns n, Ny, and Ny:

LM (ATma' _ EN,—N, l/(ENZ—N1)2+P0+(N1—H)ATmaX
Y 9RN? 2RN; RN3 '

(23)

0

B dAT:
(Ny— H) [(Ny — H) AT gg+ nPg) = [2RN3 (ATyg — ATe,erp) — EN, + H] { Cv ——d—:ﬁ— ~—(Ny— H) ATe,cr— nPo}.
(Ny— H)[(N; — H) ATe cxc nPy] = [2RNZ (ATerc — ATy exd) — EN, -+ H] [Cv dAZ;‘C — (Ny— H) ATe crc— nPo] ,

where ATe,crB and ATe,cyc are found from Eq. (22).

Having determined n, Ny, and N, from this system, we obviously obtain an analytical function T(t) for
expressions (13) and (14) which approximately describes a relay-effect transient process in a network with a
thermistor and also ensures that Eq. (1) will be identical to the system of Egs. (12) at point A where the
transient process begins, at the inflection points B and C, and at point D where the transient process ends.
For estimating the accuracy of this approximation we can use the expression [7]

|AT (f) — AT, (f) — AT, () g% (exp(M-[t —1t,)) — 1). (24)

We must note that the proposed physical model of electrothermal processes occurring in a thermistor
is a tentative one and has been used by these authors only within the framework of the specific formulated
problem. Estimating how close this model corresponds to the real processes of transfer of electric charges
in a thermistor is difficult, because the nature of electrical conductivity of 3-d oxides (including thermistors)
has to this time not yet been thoroughly enough explored [8].

The proposed method of calculating a transient in a network containing a thermistor and a linear re-
sistor after application of voltage E has been checked on a network containing a grade MT-57 thermistor
(Re = 0.1865 2, B = 3148°K, H=7-10"° W/deg C, Cy = 1.6- 10" ° W - sec/deg C, Ty = 21°C) and a linear re-
sistor (R = 190.9 Q) under a supply voltage E = 2.86 V.,

A curve depicting the transient process was plotted on the basis of calculations (curve a in Fig. 1), For
comparison of these theoretical results with experimental data, on the same diagram is shown curve b de-
picting the transient process according to oscillograms. There appears to be a close qualitative and quantita-
tive agreement between curves a and b. This confirms the appropriateness of using the proposed method for
such important practical problems as design of thermistor delay lines and time relays. The method can also
be found useful for analysis of transient processes in networks containing a linear capacitance or inductance,
also in other networks.

NOTATION

E, supply voltage applied to the two-pole network, V; R, linear resistance in this network, 2; R,
thermistor resistance at temperature T, @; R, static resistance of the thermistor at t — <, @; RT,cps
thermistor resistance at an inflection point, Q; B, activation temperature for charge carriers, °K; Ty, ambi-
ent temperature, °K; P, power generated in the thermistor, W; Pk, kinetic energy acquired by charges in
a unit volume during a unit time, W; ng, concentration of charge carriers in the thermistor; Eg, drift energy
of charge carriers, J; k = 1,38 10”2 J/°K, Boltzmann's constant; 7e, energy relaxation time, sec; PgK, '
kinetic energy acquired by the gas of charge carriers per unit time, W; Py, kinetic energy acquired by the
crystal lattice per unit time, W; P, power dissipated in the thermistor at the first instant of time, W; Pgy,
potential energy expended on heating the gas of charge carriers at the first instant of time, W; Py, potential
energy expended on generating Joule-effect heat at the first instant of time, W; n = PeO/PO, a proportionality
factor; AT, temperature drop from thermistor to ambient medium, °C; ATe, temperature drop from gas of
charge carriers to crystal lattice, °C; AT, temperature drop from crystal lattice to ambient medium, °C;
Y, thermistor conductance at temperature T, mho; Y, initial thermistor conductance, mho; f7, temperature
coefficient of thermistor resistance at temperature Ty, 1/K; I, current in the network which generates
Joule-effect heat, A; I, initial current in the network which generates Joule~effect heat at the first instant of
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time, A; Ny, a proportionality factor, W/° C; N,, a proportionality factor, A/°C; ATe,max, maximum tempera-
ture drop from gas of charge carriers to crystal lattice, °C; AT, max, maximum temperature drop from
crystal lattice to ambient medium, °C; ATmax, maximum temperature drop from thermistor to ambient
medium, °C; ATerp and ATepo, temperature drops corresponding to points B and C, respectively, °C;
dATgpp/dt and dATerc/dt, numerical values of the derivative at points B and C, respectively, °C/sec; 9,
a constant {7]; M, Lipschitz constant; t, time, sec; H, dissipation coefficient of the thermistor, W/°C; and
Cy» volumetric heat capacity of the thermistor, W - sec/°C.
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EFFECT OF THE GEOMETRY OF THE MOVING
WALL ON THE STRUCTURE OF THE FLOW IN
CONFINED FLOW IN A SLIT GAP

A. A, Volkov and L. V, Poluyanov UDC 532.516

An analytical solution of the problem is présented with an estimate of the effect of the wavy
oscillating wall on the flow characteristics of a viscous liquid in a slit gap.

When analyzing the heat- and mass-exchange characteristics between a flow of liquid and a solid sur-
face one must bear in mind that the geometry of the channel walls has a considerable influence on the struc-
ture of the flow., Experimental methods are widely used to solve this problem because of the mathematical
difficulties. In [1] an estimate is made of the effect of the microgeometry of the surface on the structure of
the flow based on a solution of the problem of Couette flow with a fixed wavy wall.

We will consider the more general nonstationary case when the wavy wall performs harmonic oscilla-
tions, the flow is confined, and the gap between the walls h is fairly small compared with the characteristic
length of the channel. The Reynolds number is assumed to be very much less than 1,

The law of motion of the lower wall and the equations of the upper and lower walls can be written in the
form

X; == Xq - asin of; )
4, (x, 1) = esin k (x — asin of); (1)

Yy = h = const,

where ¢ and e are the amplitudes of oscillation of the wall and the wavy surface; k, wave number; and @,

A. I Mikoyan Kuibyshev Engineering Building Institute. Translated from Inzhenerno- Fizicheskii
Zhurnal, Vol., 38, No. 3, pp. 473-479, March, 1980. Original article submitted July 3, 1979.
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